

Acoustic Correlates of Stress in Mankiyali

Jonathan Charles Paramore¹, Aurangzeb² ¹Linguistics, UC Santa Cruz; ²University of North Texas ¹jcparamo@ucsc.edu, ²zeb296@gmail.com

Language Background

- Mankiyali is an understudied and **endangered** Indo-Aryan language.
- Spoken by roughly 500 people in two remote villages in the Mansehra District of Northern Pakistan.

Preliminaries

- Mankiyali stress is penultimate by default.
 - o a.na. ˈ**gu**.gu o dʒan. ˈ**dar**.yoz "locks"
 - "millet" ˈ**kaa**.rɪɪ
- Mankiyali stress is weight-sensitive: CVV(C) > CVC(C) > CV CVVC, CVV > CVCC, CVC, CV
- gand. 'gii "dirtiness" o muk. '**lee** "open (IMP)" o luŋ.ˈ**gaar** "fox" ma. ˈ**sĩĩ** CVCC, CVC > CV
- ma. ˈ**čʰɪr** baŋg.su.va "buckle" "mosquito"
- The relationship between CVVC ~ CVV and CVCC ~ CVC is undetermined for the stress system.

Acoustic Correlates of Stress

Previous Research

- Very little work analyzing acoustic correlates of stress in Indo-Aryan languages (Gordon & Roettger, 2017)
- Functional Load Hypothesis: Predicts that use of an acoustic property in other areas of the phonology prevents it from being used as an acoustic correlate to stress.
- Most acoustic studies of stress have failed to disentangle word-level stress from phrase-level stress.

The Current Study

- What are the acoustic correlates of word-level and phrase-level stress in Mankiyali?
- Does the Functional Load Hypothesis hold true in Mankiyali?

Methodology

<u>Participants</u>

- 30 Native speakers of Mankiyali
- All at least trilingual in Mankiyali, Hindko, and Urdu.

Speech Materials

 Tokens were disyllabic words grouped into near minimal pairs: '**ya**.ka ~ ya. '**kar**

Target σ stressed	Target σ unstressed
'CV.CV	CV. CVC
'CVC.CV	CVC. 'CVV
'CVV.CVV	CVV. 'CVVC
'CVCC.CV	CVCC. 'CVV
CVV. CVVC	'CVVC.CVVC

- Five word pairs for each syllable type = 50 tokens.
- Tokens embedded in carrier sentences within 3-sentence mini-monologues.
- 30 participants X 2 repetitions X 2 Stress levels X 50 Tokens = 6,000 Tokens (3,000 word-level and 3,000 phrase-level)

Sentence 1 (target sentence to analyze phrase-level stress)

Mini sangi [token] mandzu My friend [token] said "my friend said [token]"

Sentence 2

Mini sangi du var [token] mandzu My friend two times [token] said "my friend said [token] two times"

Sentence 3 (target sentence to analyze word-level stress)

Mini sangi coor var [token] mandzu My friend four times [token] said "My friend said [token] four times"

<u>Analysis</u>

• 3 acoustic properties extracted from each target vowel: Duration, pitch, and intensity

Results

- Models examining acoustic correlates of word-level stress.
- A significant effect of STRESS on duration.

Syllable Type	Coefficient (ms)	p-value
CV	$\beta = -6.9032$	p < 0.0001
CVC	$\beta = -6.3230$	p < 0.0001
CVCC	$\beta = -6.1269$	p < 0.0001
CVV	$\beta = -8.1370$	p < 0.0001
CVVC	$\beta = -11.317$	p < 0.0001

- Generally no effect of STRESS on pitch or intensity.
- Models examining acoustic correlates of phrase-level stress.
- A significant effect of STRESS on all three acoustic properties.

Duration

Pitch

Syllable Coefficient (ms) p-value $\beta = -8.3417$ p < 0.000	e
R = -8.3417 $p < 0.000$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$)1
CVC $\beta = -12.8367$ $p < 0.000$)1
CVCC $\beta = -10.204$ $p < 0.000$)1
CVV $\beta = -24.552$ $p < 0.000$)1
CVVC $\beta = -25.294$ $p < 0.000$)1

Syllable	Coefficient (Hz)	p-value
CV	$\beta = -16.079$	p < 0.0001
CVC	$\beta = -12.827$	p < 0.0001
CVCC	$\beta = -11.566$	p < 0.0001
CVV	$\beta = -8.2913$	p < 0.0001
CVVC	$\beta = -13.4577$	p < 0.0001

<u>Intensity</u>

Syllable	Coefficient (dB)	p-value
CV	$\beta = -4.1828$	p < 0.0001
CVC	$\beta = -4.0198$	p < 0.0001
CVCC	$\beta = -3.169$	p < 0.0001
CVV	$\beta = -3.4589$	p < 0.0001
CVVC	$\beta = -4.8317$	p < 0.0001

Implications

- **Duration** is the only acoustic correlate to word-level stress, of the the properties we measured, indicating that the FLH does not hold in Mankiyali.
- All three acoustic properties measured act as acoustic correlates to phrase-level stress.
 - o This is interesting, given that most studies suggest pitch is the sole acoustic correlate to phrase-level stress.